President’s Message

I purchased my last new car, a Subaru, because it has a reputation of reliability. The engineering behind the engine and the drivetrain were way ahead of its time when introduced into the US market and refined over decades with a proven track record. So when the salesperson asked about extended warrantee package, I declined. So I was reminded that though the base car itself is very reliable, it utilizes over 140 computers that are not manufactured by Subaru. This thought was running through my head along with some scenes from the latest Terminator movie that talked about linking all our electronic devices into a single “App” as I sat through a presentation on small cell sites. I just couldn’t get Cyberdine out of my head.

The presentation announced that our current 4G LTE cellular communications platform will be upgraded to 5G by 2020. Initially, I thought 2020 was a long way off. But that’s only 4 years away; actually 3 years away in three months. This new platform would be needed to service the demand for mobile communications ranging from phones, tablets, watches, cars, and other emerging technologies. Remember the iphone in 2006? Of course you don’t because the original iphone was released in June of 2007. In less than a decade, we have gone through 7 generations of this particular smart phone. Data usage has gone up 150,000% since 2007. Thus is the demand rate for reliable wireless communications. Firms including major cellular carriers are working hard at improving the wireless communications infrastructure to meet the current and projected demands. Smart phones are so ubiquitous that we happily carry them everywhere as it tracks our movements, communications and interests. These technologies are spilling over into Transportation as well. It’s quickly becoming a reliable way to measure travel times through the collection of data. How many of us look up traffic congestion information on our mapping App on our phone rather than WSDOT’s flow map because it’s convenient.

~ See President’s Message Next Page
President’s Message – continued

and has much broader coverage?

It’s not so hard to believe that one of the 140 computers in my car could eventually interface with the Bluetooth/wifi/Communicraze technologies with vehicles near me to sort out how fast we are going and what direction and keep us in our lanes, on our course and not run into each other. We’ll have information at our fingertips or voice commands on where parking is available and its current fee rate. Devices will track our eye movements and predict whether we will make a mistake or not while driving. With a continued 150,000% growth in data usage, what adjustments to our infrastructure design, operations and maintenance must we anticipate and accommodate?

We’ll be seeing more and more activity with connected devices including vehicles. What does that mean to those of us that are planning, designing and maintaining our transportation systems? We can start by attending this year’s PacTrans Region 10 Transportation Conference held at University Washington October 14. The Conference will bring the Pacific Northwest community together to network and share current research and ideas for research, education, workforce development, and future collaboration. Please take a look at the Conference description provided in the Newsletter and join me by registering and attending. We’ll also be holding an ITE Board and Volunteers meeting for those wanting to get deeper involved in this year’s activities. We’ll be exchanging ideas for advancements in our transportation systems as well as ideas for making this the best ITE Washington year yet. ●

Paul Cho, President
Traffic Operations Engineer
City of Redmond

Scribe Report

Have you purchased something recently? Maybe you bought a new mobile phone . . . preferably one without melting batteries. Perhaps you obtained motor vehicle fuel or a new bicycle wheel to replace the one that bent because those craters on your commute never get patched. Or, more likely, you bought a venti latte and asked for the whip to be orange and in the shape of a cone with reflective drizzle around the midsection. You did do that, right? Orange will be out of season soon.

What you purchased made its way to your hands by means of freight. Our freight connections in Washington State are critical to the economy, critical to air quality and environmental protection, and critical to our quality of life. As transportation planning and engineering professionals, we’ve dedicated our lives (8.0 recorded hours each day) to protecting the quality of life and planning for the design and construction of freight mobility improvements is one way we carry out that commitment.

In Washington State, the nascent Northwest Seaport Alliance has helped the Port of Seattle and Port of Tacoma partner in planning investments. The largest container ships will be accommodated by new berthing facilities, but not too many facilities that go unused. We learned about this alliance at our latest ITE luncheon meeting, the 2017 Kick-Off Meeting at Salty’s on Alki Beach. Our three presenters included Christine Wolf, from the Northwest Seaport Alliance, who shared with us the many benefits of collaboration in the private sector. The optimization of berthing facilities, coupled with our regional voice in competing with Prince Rupert and Long Beach, will ensure the viability and functionality of our Puget Sound ports. A commitment to environmental protection in congestion relief programs for terminal and regional freight traffic is also laying the foundation for future growth while mitigating that growth with new technologies and capacity improvements. Chief among those are new technologies that eliminate or reduce on-board emissions from drayage operations within terminal areas and between terminals and intermodal operations. The future of clean-fuel freight is bright and advancing rapidly!

While the private sector builds the foundation for smart competition and cost management, many local agencies are building the foundation for a transportation network that works for all users and facilitates commerce. The City of Seattle is leading efforts in planning for freight mobility with the recently-approved Freight Master Plan and we received

~ See Scribe Report Next Page

Volunteers Needed
Scribe Report– continued

the details from SDOT’s Tracy Krawczyk. Seattle’s Freight Master plan is one of four modal plans that SDOT develops and updates on a routine basis (the others are Bicycle, Pedestrian, and Transit) and Seattle’s latest Freight Master Plan is a data-driven effort that leverages the arterial network, coordinated traffic signal systems, and a variety of technologies to provide expedited movement along freight-intensive corridors (identified in the Major Truck Streets Map) while limiting freight impacts on adjacent residential neighborhoods. The plan serves as a guide to investment and a strategy document so that smart decisions can be made regarding freight mobility investments.

Making smart investments statewide builds on these key efforts in the private sector and local community. Ashely Probart is the Executive Director of the Washington State Freight Mobility Strategic Investment Board and he provided our ITE members with key insights into how this public board helps prioritize freight investments in Washington State. Building on the State and local-agency network of T-1 and T-2 freight corridors, the FMSIB works closely with local ports, municipalities, and other agencies to secure funding for projects that enhance freight mobility, provide connections between ports, industrial areas, and commercial warehousing areas. Rail-grade separations, environmental mitigation on roadway projects, and spot safety and operational improvements that benefit all users, including vulnerable users. A wide variety of projects, from Tacoma to Bellingham and throughout Washington State ensure that our commerce moves efficiently. Reducing congestion and stop-start operations while also reducing conflicts between modes is a key investment strategy and it is being accomplished with large and small projects alike.

Even as we seek to consume less and work toward equitable and environmentally-responsible supply chain management, our population continues to increase and this land of opportunity is also a land across which we must move goods and those who provide services. The evolution of freight movement is as much a story of collaboration and technology advancement as it is a story about building transportation infrastructure. Our objective remains the same but our role is evolving and transportation planners and engineers in Puget Sound will have many opportunities to act on the forefront of a freight mobility revolution. Now all we need is some locally-sourced, organic, free-trade, low-carbon, guilt-free, CFC-neutral orange whip for that venti latte. ●

Scott O. Kuznicki, P.E.
Director of Traffic, Toxcel, Inc.

Day in the Life of an ITE Professional

We’re planning a Day in the Life view of what ITE Transportation Professionals go thru in their routine and maybe not so daily routine profession to highlight our activities. Date to be determined

From Midnight to Midnight you’ll take photos of your office meetings, planning sessions, on the job site, etc. Take as many pictures related to your ITE Professional job and submit. The committee will select photos for the ITE Newsletter and the rest for our website.

Committees

Vendors
Ed Aristo, Sea-Tac Lighting & Controls,

Consultants:
Daniel Lai, Transpo Group

Students: Pablo Para, City of Auburn

EWA Members
Elena Bertolucci, Sea-Tac Lighting & Controls

Contractors: ________________________

Agencies: ________________________

More information in our next edition.

Sign of the Times

Caution sign alerts drivers to a dense development ahead.

Located in Hyannis, MA on Cape Cod.

Photo by:
Jim Bloodgood, PE is the County Traffic Engineer/Traffic Operations Manager for Snohomish County Public Works.
2016 ITE Washington

Dates are subject to change. Watch future newsletters for details and events.

OCT 14 [Friday] In conjunction with the PacTrans Conference, ITE Washington Section will hold a luncheon with a keynote speaker (TBD) in the Yukon Pacific Room at the UW Faculty Club from Noon to 2pm. Lunch cost is $10 which will be used for our 2017 Student Endowment Fund contribution.

OCT 14 [Friday] Joint Meeting with PacTrans Conference, University of Washington

This year, ITE is excited to co-host the PacTrans Regional Transportation Conference at the University of Washington. This event unites the membership from ITE, PacTrans, and ITS-Washington to further our partnership in working together to advance this region’s developments in Transportation research, education, knowledge transfer and collaboration.

We look forward to seeing you at the full-day free conference on Friday, October 14, 2016. More information is also provided at: https://pactransconference.com

Event Information:
When: October 14, 2016
Time: 8:00am to 5:30pm
Where: University of Washington, Husky Union Building (HUB)
Room: Room 160 Lyceum

NOV 08 ITE Business Meeting (Topic and Location TBD)

DEC 05 Joint Meeting with ITS (Location TBD)

JAN 10 ITE Business Meeting (Topic and Location TBD)

FEB ITE/IMSA Conference and Exhibit Show (TBD)

MAR 14 ITE Business Meeting (Topic and Location TBD)

APR 11 ITE Business Meeting (Topic and Location TBD)

MAY 16 ITE Business Meeting (Topic and Location TBD)

JUN 15 (THUR) Annual Meeting (Location TBD)

JUN 16 (FRI) Annual Golf Tournament/Scholarship Foundation - (Location TBD)

2016 ITE WA Partner Events

OCT 11-14 American Public Works Association-Oregon Conference. Riverhouse Hotel and Convention Center, Bend, Oregon

OCT 18-20 Infrastructure Assistance Coordinating Council Conf. at Coast Wenatchee Center Hotel

OCT 25-28 Northwest Pavement Management Assoc. Conference – Sheraton Portland, Oregon Airport Hotel
Office Assistant
Beaverton, OR

Blueridge Lighting & Controls, LLC (Sister company to Sea-Tac Lighting & Controls) is accepting qualified applications for the position of Office Assistant. This is a support role for project management and quotation teams. This allows the eligible person an opportunity to grow with our company’s successes. We provide our employees with a first class office environment, full medical benefits, 401K and other positive attributes. We will train the qualified applicant with the goal of progressing to a Project Manager position. Our office is located in Beaverton, Oregon adjacent to the MAX Central Plaza Station.

Contact Jennifer Corona jcorona@seataclighting.com for a full details and qualifications.
Where was the First Walk/Don't Walk Sign Installed?

You Will Not Find the Answer Here

The Highway History page recently received an inquiry about where the first Walk/Don't Walk sign was installed. This question has come up before, but we've never been able to find the answer. Our research helped pin down the time frame (late 1930's), but not the location. The Highway History page does not like to fail, but here's a summary of the research for what it's worth.

During the 1930's, city officials were trying to figure out how to reduce the death and injury toll among pedestrians. For example, cities began passing laws establishing that pedestrians have the right-of-way under certain circumstances. When that didn't work, they tried physical means, including barriers to prevent pedestrians from crossing where they weren't supposed to cross.

One method was to add a light to the traffic lights to indicate the walk cycle. When it was on, all traffic approaching the intersection stopped so pedestrians could cross the streets in all directions, including diagonally. (This crossing method was known as the "scramble" in later years.) I came across an article in the February 1934 issue of Public Safety magazine (published by the National Safety Council) describing an experimental traffic light developed by Dr. John Harriss, a former Special Deputy Police Commissioner in charge of traffic (1918-1926). His system was installed on Fifth Avenue between 40th and 45th Streets. A diagram of the signal shows a light at the top and bottom of the signal, and a hand with palm out in the center where the amber light would normally be.

The signal operated in four periods:

The new system eliminates all turns on the red light. It provides every 100 seconds a 20 second period in which, with the lens shining yellow and the hand red, all motor traffic is stopped while pedestrians cross at the four corners. This is followed by a five second interval, lens dark and hand shining red in each direction, in which pedestrians clear the intersection. Then vehicles move east and west for 30 seconds. Again, traffic moves for five seconds, when north and south vehicular traffic is given the green light for 58 seconds. A two second hiatus in which neither pedestrians nor vehicles may proceed, completes the 120 second cycle.

Dr. Harriss believes that the illuminated hand which forms a distinctive part of his signal device will be an improvement over the round red lens, which is used at present. To many motorists, he holds, a red light often indicates danger or detour, and not definitely stop. Many are in the habit of starting out while the signal is still red.

Dr. Harriss hopes the new signal will eliminate a source of irritation and danger when drivers fail to see, or claim they have failed to see, the traffic officer's uplifted hand. The lighted hand should also, he thinks, curb the practice of passing a red light, which he believes to be one of the most dangerous and serious violations of the traffic rules and the cause of thousands of...
Walk/Don’t Walk – continued

deads and injuries . . .

The great majority of cities in the United States, according to Dr. Harriss, use the light signal system prevalent in New York City at the present time. There has been considerable experimentation with the extra yellow light, some cities using the amber signal as a cautionary sign; others, such as Boston, Los Angeles and San Francisco, as a crossing light for pedestrians. Among cities abroad, Paris has used the combination of one red light followed by a dark lamp, while London and Berlin use modifications of the red, green and yellow system.

In December 1934, the magazine carried an article about a new "progressive control" signal system installed on Michigan Avenue from 12th Street to Oak Street in Chicago. The system contained several "revolutionary" features, including "Walk" indications for pedestrians. Synchronization of traffic signals allowed motorists, if they adjusted their speed, to keep moving through intersections without having to stop at each one; traffic in opposite directions was controlled separately. Here is how the article described the pedestrian feature:

Under the old control, we had to wait, first on one foot and then on the other, for the long period of the red light to expire. Then we were allowed a long period of green. We were subject to the interference of turning vehicles, and sometimes, if we did not complete our crossing on the green, we were caught in the middle of traffic, some of which might have been "jumping" the amber.

Perhaps we became too impatient and tried to cross against the light. Then we had a merry chase through traffic which was "hitting it up" in order to get the greatest possible distance on the allotted time.

Under the new system, a "Walk" light shows during a part of the time that the green light is burning for traffic moving in the same direction as ourselves. According to W. C. Brandes, City Traffic Engineer, this signal is so timed that if, in crossing Michigan, we step from the curb before the "Walk" light goes off, we should have time to reach the safety island before the traffic in front of which we have been crossing, gets the "Go" light. We are, however, still subject to interference from turning vehicles.

Whereas, under the old system, traffic on both sides of Michigan stopped and started together, under the new, at half of all the intersections, traffic may be stopped on one side and moving on the other, so, it means the pedestrian may cross only one-half of the street at a time, spending a few seconds on a safety island.

Pedestrians complained that they were forced to wait on the island, although Mr. Brandes indicated their overall time was better under the new system. Some pedestrians did not understand that the "Walk" signal applied only to their side of the avenue, so the city placed lighted signs on top of the signals informing pedestrians how far to walk on each signal.

On October 13, 1937, the National Safety Council’s Committee on Pedestrian Control presented a report on "Pedestrian Control and Protection" during the 26th National Safety Congress. The report included the following:

For several years cities in different parts of the country have had varying successes with the regulation of pedestrian traffic by Stop and Go signals. Some cities have had not only legal requirements but a large measure of voluntary obedience, and in such sections the actual control of pedestrian traffic by signals is usually successful. In other cities general opinion is that such control is not practical and cannot be imposed upon pedestrians. One generally acceptable principle is that unreasonable delays due to unnecessarily long cycles of operation of Stop and Go signals are conducive to disobedience by pedestrians. This has been one of the large factors in reducing the length of cycles to the minimum which will handle traffic successfully.

Another development in the use of Stop and Go signals for pedestrian aid and protection is the pedestrian walk light. Formerly, this was incorporated into the cycle as a separate phase for pedestrians to walk in all directions during which no vehicular traffic might move. However, this tended to increase greatly the total length of the cycle because it added to the time required for vehicles to move [and] the time required for pedestrians to move in all directions and did not enable pedestrians to take advantage of the opportunity to cross with the green light. This type of special pedestrian signal has generally been discarded in favor of the type, which operates in conjunction with the green light at the ordinary four-way intersection. It allows pedestrians to cross in the same direction and at the same time as the vehicles with the exception that the special pedestrian light (usually white or purple) goes off a few seconds before the green changes to yellow because it requires a longer time for pedestrians than for vehicles to clear the intersection. At special types of intersections where there is almost a continual flow of vehicles

~ See ‘Walk/Don’t Walk’ Next Page
across the crosswalks, it is necessary to install special pedestrian walk signals if there is appreciable pedestrian traffic and protection is necessary. In such a case it is usually necessary to operate the walk signals as a separate phase of the cycle.

To be most successful for pedestrian obedience a Stop and Go signal should have a face toward each direction of pedestrian movement. If signals do not face all movements, the pedestrians going in certain directions will have to depend upon the indications of signals at right angles to their direction and, thus, be in danger of becoming confused and disobeying the signals inadvertently.

In these examples, the references to walk lights do not appear to mean the lights had a "walk" or "don't walk" on them. It appears the cities were attempting to accomplish with lights what would later be accomplished by the Walk/Don't Walk signs.

An article in The New York Times for December 4, 1938, described an initiative to stop jaywalkers: "Pedestrian control signals reading alternately "Wait" and "Walk" will be installed in Times Square, at the intersection of Broadway and Forty-fifth Street, about Jan. 1." In my limited research, this is the earliest reference I found to a form of Walk/Don't Walk sign, but that does not mean it was the first in the country.

Walk/Don't Walk signs debuted in Washington, D.C. in 1939. An article in The Evening Star on October 5, 1939 is headlined:

The article began:
Gratified at the success of the elaborate pedestrian walk-light system recently installed at the busy intersection of Thirteenth street and Pennsylvania avenue N.W., Traffic Director William A. Van Duzer said today he is pushing plans for installation of similar "walk" and "don't walk" neon signs at other congested corners.

The city had tried bright neon walk lights for the pedestrian signals at Twelfth and 13th Street, but Mr. Van Duzer said they "have never been very successful, largely because they aren't prominent enough to hold the pedestrian's attention." He added, "The larger and brighter neon signs are working out much better."

An article by Van Duzer on regulation of pedestrian traffic appeared in the February 1940 issue of Public Safety. Although he did not discuss signs, the article included two photos of the traffic pole at 13th Street. They show a traffic light with four lights (including a right turn signal). Below it is a separate sign illuminated for "walk" in one photo, and for "don't walk" in the other.

Neither the article about New York City nor the District of Columbia claimed that its installation was a "first" nationally. However, they help to pin down the time frame of 1938-1940 for the origins of the sign.

Richard F. Weingroff
Information Liaison Specialist
Richard.weingroff@fhwa.dot.gov
US Department of Transportation
Federal Highway Administration

ITE-WA Membership
Renew or become an ITE-Washington Section Member and enjoy connecting with others in our industry. Personal interaction, growth, discussions, interesting topics and social events make the membership worthwhile.

westernite.org/Sections/washington
Wise Tales
Phases of a Project: - Anon

1 — Exultation
2 — Disenchantment
3 — Search for the Guilty
4 — Punishment of the Innocent
5 — Praise for the Uninvolved

CrossWalks Answer Key found in the advertiser section

~

Professional challenge: find all words listed in the Newsletter
ITS GOES WIRELESS

One Wireless Sensor, All Your ITS Applications

Sensys Networks speeds deployment and reduces maintenance for all your ITS applications from one wireless sensor.

One Wireless Sensor, All Your ITS Applications
ITE-WA Support Advertisers

Advanced Traffic Products
(425)347-6208 Fax (425)347-8308
Edie@advancedtraffic.com www.advancedtraffic.com
1122 Industry Street, Building A, Everett, WA 98203

All Traffic Data Services Inc.
Eric Boivin
6401 Lake Washington Blvd SE
Renton, WA 98056
Phone 425.228.0072
Cell 303.668.0220
Fax 303.278.2681
ericboivin@alltrafficdata.net

Fehr & Peers
1001 – 4th Avenue, Suite 4120
Seattle, WA 98121
Ph. 206.576.4220
www.fehrandpeers.com

Lane Light.
CROSSWALKS STOP BARS GRADE RAIL CURVES TUNNELS
1866.466.4836

Idax Data Solutions
Mark Skaggs • 425.250.0777 mark.skaggs@idaxdata.com
we understand your data needs
• Accurate and reliable data
• Highly responsive service
• Customized solutions

KPG
A Planning & Design
Traffic Engineering
Transportation Planning
Sustainable Transportation Solutions
Signal, Illumination & ITS Design
Transit Planning & Design
Non-Motorized Planning & Design
Seattle | 206.286.1640
Tacoma | 253.627.0720
www.kpg.com

National Data and Surveying Services
Data Collection You Can Count On www.ndsdata.com
Brian Nichols
Northwest Regional Manager
O (425) 250-6827
M (916) 847-6270
brianl@ndsdata.com

VOL. 27 | ISSUE 2 | OCTOBER 2016
INSTITUTE OF TRANSPORTATION ENGINEERS & PROFESSIONALS
Leading in Innovative Transportation Solutions

Placing a premium on customer relationships, Western Systems is the leader in providing innovative solutions, support and manufacturing for the transportation industry.

- Advanced Traffic Management Systems
 Local and Central Software
- Adaptive
 SCOOT™ and ACS Lite
- Transit Signal Priority
 LRT and TSP
- Communication Products
 Fiber, Ethernet, DSL and Wireless
- CCTV
 Analog and Digital
- Detection
 Video, Wireless and Loop
- Cabinet Design and Manufacturing
 NEMA, Rack Mount and ITS

Trusted to Get it Right!

www.WesternSystems-inc.com | 425.438.1133

REACH OUT AND SUPPORT
ITE-WASHINGTON.
 Imagine: 26 million aging streetlights in U.S. cities generating greenhouse gas emissions equivalent to 2.6 million cars and consuming as much electricity annually as 1.9 million households. These aging lights—typically identified as the yellow hued high-pressure sodium fixtures—cost cities an estimated $2 billion in energy plus another $4-6 billion in maintenance costs each year. The good news: cities are changing. Globally, cities are upgrading their lighting infrastructure to save energy and money as well as creating a safer and smarter environment for their residents.

BELLINGHAM, WASHINGTON: A CITY WITH AN ILLUMINATED MISSION

Project Highlights

- Energy savings: 70% (or 1.8 million kWh)
- Annual carbon emissions reduction: 2 million pounds
- Rebates: $400,000
- Annual energy savings: $240,000

To create a modern, illuminated, energy-efficient city, Bellingham retrofitted its 3,600 city-owned streetlights and lighting infrastructure with new light emitting diode (LED) lights integrated with wired (power line) and wireless (radio frequency) controls based on Echelon’s intelligent networking solution. Bellingham anticipates its new lighting system will reduce its energy consumption by 70 percent or 1.8 million kWh by the year 2020.

Case Study: www.echelon.com/applications/pl-rf-outdoor-lighting

ILLUMINATION, CONTROLS & POLE SOLUTIONS

LEOTEK

An Industry Leader in LED Street and Area Lighting

Sea-Tac Lighting & Controls, LLC ROADWAY DIVISION 206.575.6865 www.seataclighting.com
ITE-WA Section Board 2015-2016 & Volunteers

President
Paul Cho, P.E., PTOE
Traffic Operations Engineer
City of Redmond
P.O. Box 97010
Redmond, WA 98073-9710
425-556-2751
pcho@redmond.gov

Vice President & Treasurer –
Mike Hendrix, P.E., PTOE Project Manager
Perteet
505 5th Ave. S.
Suite 300
Seattle, WA 98104
206-436-0515
mhendrix@perteet.com

Secretary
Daniel Lai, P.E.
ITS Technical Manager
Transpo Group
12131 113th Avenue NE
Suite 203
Kirkland, WA 98034
425.821.3665
daniel.lai@transpogroup.com

Immediate Past President
Carter Danne, P.E., PTOE
Associate Civil Engineer
City of Seattle
P.O. Box 34996
Seattle, WA 98124
206-684-0817
carter.danne@seattle.gov

Scribes
Darcy Akers - ITS Engineer, City of Bellevue
Scott Kuznicki, PE - Director of Traffic Engineering, Toxcel, LLC

Website
James Le, PE – Senior Transportation Planner, Seattle DOT

Student Committee
Pablo Para, PE - Traffic Engineer, City of Auburn

Newsletter Advertisements
Ads run from January through December. The cost of ads submitted during the year will be prorated. Email graphics in jpg, png, or tif file format to:
Ed Aristo, Newsletter Editor
itewaeditor@gmail.com
Send a check made out to “Institute of Transportation Engineers” for the ad size you desire to: Mike Hendrix, ITE WA Vice President/Treasurer at the above address. Please call Mike Hendrix at the above phone number to instead pay using our square card reader or PayPal.

2016 Annual Advertising Rates
Business Card Ad $100
Quarter Page Ad $250
Half Page Ad $500
Full Page Ad $1000

Newsletter Contact Information
Please let us know if your contact information changes so that you continue to receive monthly ITE WA announcements and newsletters by email. To update your information, click on the Membership tab on the ITE WA website:

Newsletter Comments and Article Submissions
If you have comments about this newsletter or have an interesting announcement, topic, or project to share, please contact Ed Aristo, Newsletter Editor itewaeditor@gmail.com.
Articles must be received by the third Thursday of the month to be considered for publishing in the next issue.

ITE WA Website
http://www.westernite.org/Sections/Washington/

Follow Us on Twitter! @ITE_Washington